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ABSTRACT
Bioacoustics increasingly relies on large datasets and computational 
methods. The need to batch-process large amounts of data and the 
increased focus on algorithmic processing require software tools. To 
optimally assist in a bioacoustician’s workflow, software tools need to 
be as simple and effective as possible. Five years ago, the Python 
package Parselmouth was released to provide easy and intuitive access 
to all functionality in the Praat software. Whereas Praat is principally 
designed for phonetics and speech processing, plenty of bioacoustics 
studies have used its advanced acoustic algorithms. Here, we evaluate 
existing usage of Parselmouth and discuss in detail several studies 
which used the software library. We argue that Parselmouth has the 
potential to be used even more in bioacoustics research, and suggest 
future directions to be pursued with the help of Parselmouth.
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Introduction

A bioacoustician’s job lies at the intersection of many different skill sets. As for any empirical 
scientist, collecting data and designing experiments to test hypotheses are essential. The nature 
of acoustic data also requires a bioacoustician to be technically adept, both when choosing 
experimental equipment and when analysing the collected recordings. Especially the latter 
part has become increasingly important: advances in computational power and storage 
capacity have created new possibilities to collect larger acoustic datasets and apply increasingly 
complex analyses. Key skills in bioacoustics now include managing and processing lots of data 
and automating these processes through scripting. With some exceptions, these skills are 
typically not the main training of the classical empirical scientist and considered incidental to 
the actual research question. As such, any help in automating and smoothing out the data 
processing aspect can help a bioacoustician focus on the scientific questions at hand.

Five years ago, Jadoul, Thompson, and de Boer released Parselmouth1 (Jadoul et al.      
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2018), an open-source Python library for Praat (Boersma 2001, Boersma & Weenink  
2023). Praat is a speech analysis software package which is widely used within 
phonetics and other linguistics disciplines. Crucially, the the wide range of acoustic 
algorithms in Praat includes analyses which are just as relevant and applicable to 
other bioacoustics research. These analyses include, for example, estimating funda-
mental frequency and formants, or determining a signal’s intensity or harmonics-to- 
noise ratio. Various past bioacoustics studies have successfully relied on Praat for 
acoustic analyses (e.g. McComb et al. 2014; Fitch et al. 2016).

From the onset, Parselmouth’s goal has been to provide a full-fledged Python library that 
integrates into the larger Python scientific ecosystem easily and efficiently. This way, 
Parselmouth aims to both allow experienced Praat users to combine their work with the 
large range of scientific tools available for Python, as well as provide access to Praat’s 
functionality for any user of Python unfamiliar with Praat. Python is a reasonably simple, 
easily learnable (Bogdanchikov et al. 2013; Mészárosová 2015), cross-platform, and exten-
sible programming language with many built-in libraries. These strengths make it well- 
suited to act as a glue language between different software libraries and programming 
languages.2,3 Parselmouth creates the possibility to further integrate Praat’s functionality 
with other libraries and thereby simplify and optimise workflows in a single programming 
environment. At the same time, each released version of Parselmouth directly corresponds 
to a specific Praat version,4 and produces the exact same numerical results.

There is a considerable amount of overlap between the typical challenges faced during data 
analysis by phoneticians and by bioacousticians. For example, researchers from both fields often 
need to perform the same measurements on all audio fragments in a dataset, segment record-
ings, cluster and classify audio fragments into categories. As a result, tools originally developed in 
the context of phonetics – such as Praat and Parselmouth – are relevant beyond human speech. 
This is particularly the case for one taxonomic group: mammalian vocal production mechan-
isms are, almost always, similar to ours (Elemans et al. 2015). And since both fields have moved 
beyond manual extraction and copy-pasting of data into spreadsheets, solutions for batch 
processing of data are not only useful, but crucial (Rocha et al. 2015; Beguš et al. 2023).

In this article, our ambition is threefold. First, we aim at demonstrating the broad range of 
applications and suitability of Parselmouth for bioacoustics research. Second, we describe in 
which contexts it most often gets used, and in which others it could be fruitfully used. Third, 
we want to evaluate whether and how Parselmouth has reached the aims set out during its 
conception and development (Jadoul et al. 2018). We present a handful of practical, hands- 
on examples of past (bio)acoustics projects that have used Parselmouth, and show which 
Praat functionality these projects accessed via Python. We then use these projects as case 
studies to evaluate three main goals of Parselmouth, and answer the following questions:

● Was the development of research methods or analyses more time efficient because 
of Parselmouth?

● Did the development benefit from the integration of Praat functionality with Python 
libraries and tools?

● Was the computation or data access more efficient because of the interface between 
Praat and Python?
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The diversity of bioacoustics research is such that it cannot be appropriately captured by 
a couple of case studies. Therefore, after presenting case studies which provide 
a practical, in-depth perspective on the use of Parselmouth in bioacoustics, we give 
a broad, synthetic overview of other published research which used Parselmouth.

Case studies

Batch-analysis of large datasets: ‘Vocal plasticity in harbour seal pups’

The algorithm to track the fundamental frequency is one of Praat’s key pieces of 
functionality (Boersma, 1993). Torres Borda et al. (2021) used Parselmouth to test for 
vocal plasticity of harbour seal (Phoca vitulina) pups, and in particular the effect of 
background noise on the fundamental frequency (f0) of their vocalisations. 
Environmental noise from the Wadden Sea was band-pass filtered between 250 and 
500 Hz to mask the seal pups’ typical range of f0. This noise was played back at different 
intensity levels in randomised orders of 5-minute chunks, and meanwhile the pups’ 
vocalisations were recorded. In response to the high intensity noise playback, the pups 
adapted their calls by lowering the fundamental frequency. Moreover, some individuals 
showed an increase of their call amplitude and a shift in the spectral tilt of the calls.

Accessed Praat functionality
Parselmouth was used to analyse the acoustic properties of the seal pup calls recorded during 
the experiment. More specifically, sound recordings consisted of long files containing multi-
ple calls. The onset and offset of calls were manually annotated with Praat TextGrids, using 
Praat’s graphical user interface (GUI). Then, a Python script processed all recordings and 
saved acoustic parameters into a table. In this script, Parselmouth took up the role of reading 

Figure 1. A plot of the fundamental frequency estimated through Parselmouth, overlaid on two seal 
call spectrograms, shows Praat’s ability to correctly track the fundamental frequency, even in the 
presence of noise. Automated generation of such plots was used to swiftly assess the tracking quality, 
as to ensure correctness of the results.
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the audio files, of extracting the individual calls and their duration based on the annotations, 
and – most importantly – of estimating the calls’ mean f0 (Figure 1).

The central part of the Python script for analysis revolves around the application of 
the parselmouth.Sound.to_pitch_ac() method to each call’s sound 
fragment:

This function is called repeatedly, as the main code loops over a table, loads the audio 
fragments from disk, and combines all pitch analysis results into a single table of results.

Note that the usage of to_pitch_ac() directly corresponds to the ‘Sound: To Pitch 
(ac). . .’5 action in the Praat GUI or in a Praat script: this Python function accepts the 
same parameters as Praat, and produces exactly the same results (Parselmouth uses 
Praat’s underlying C/C++ code; Jadoul et al., 2018). One advantage of this is that it 
allows for a hybrid workflow combining the strengths of both Praat and Python. One can 
first use Praat to manually investigate a limited subset of vocalisations, finetune the pitch 
analysis parameters to the species or even individuals, and ensure the fundamental 
frequency can be adequately tracked. Thanks to this direct correspondence between 
Parselmouth and Praat, the right parameter settings, once determined, can easily be 
transferred into a larger Python analysis script to process all data in batch.

The use of Parselmouth benefited this project in the following ways:

● Development efficiency: Decomposing the whole script into various custom Python 
functions reduced the development complexity. Similarly, the use of Python data 
structures such as lists and dictionaries made development easier. While this script 
could have been written in the Praat scripting language, the ability to use the Python 
data and control structures made development subjectively more efficient.

● Python integration: The Pandas Python library was used to both read the table with 
the recordings’ metadata, and to write the results. Reading and writing tables is 
perfectly feasible within a Praat script. However, previous knowledge of the widely- 

def calculate_pitch(snd_part):
pitch = snd_part.to_pitch(time_step=TIME_STEP,

pitch_floor=200, pitch_ceiling=800)
pitch_track = pitch.selected_array
pitch_track = pitch_track[pitch_track['frequency'] != 0]

if len(pitch_track) == 0:
return np.nan, np.nan, np.nan

else:
median_pitch = np.nanmedian(pitch_track['frequency'])
median_pitch_i = np.argmin(abs(pitch_track['frequency'] -

median_pitch))
median_pitch_strength = pitch_track['strength'][median_pitch_i]
pitch_iqr = scipy.stats.iqr(pitch_track['frequency'])
assert median_pitch >= 200 or np.isnan(median_pitch)
return median_pitch, median_pitch_strength, pitch_iqr

Code fragment 1: A short Python function wraps the functionality to estimate the median funda-
mental frequency using Parselmouth. Note the seamless interaction between Praat functionality 
(e.g. snd_part.to_pitch(. . .)), pure-Python syntax (e.g. the function definition or if- 
statement), and other Python libraries (i.e. NumPy’s np.nanmedian and SciPy’s scipy. 
stats.iqr) (see Supplemental online material, calculate_pitch.py, https://figshare. 
com/articles/dataset/Parselmouth_for_bioacoustics_automated_acoustic_analysis_in_Python/ 
24307391?file=42678629).
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used Pandas library sped up development, allowed to focus on the problem at hand, 
and eliminated the risk of errors when learning to use new tools.

● Computational efficiency: Given the simple nature of the analysis script, 
Parselmouth and Python did not offer substantial gains in efficiency compared to 
using the Praat scripting language. Python and Pandas, being specialised software, 
are implemented more efficiently than the corresponding Praat functionality, but as 
the acoustic analyses made up most of the computation, any difference due to file 
writing and bookkeeping would be imperceptible. However, in a situation where the 
analysis takes much longer to run, Python’s built-in multiprocessing module 
would be able to run the analysis in parallel with only minimal extra effort, some-
thing which (at the time of writing) is impossible to do in Praat.

Torres Borda et al. (2021) did not use Parselmouth to prepare the experiment’s playback. 
However, Parselmouth could have easily filtered and normalised the recorded noise, and 
created the randomised playbacks in a single go. We are currently performing the same 
experiment by Torres Borda et al. (2021) in another pinniped species, the grey seal 
(Leonetti et al. 2022). Setting up this new experiment has shown us the value of 
programming the automatic generation of stimuli: An existing script would have saved 
time when adapting the experiment to a second species. In addition, a script to generate 
playbacks would have provided an exact record of the stimulus manipulation, increasing 
reproducibility and traceability of a scientific experiment.

The code to generate the playbacks in (Leonetti et al. 2022) is not complex. It only uses 
Parselmouth to load, create, concatenate, and save audio files, something any other audio 
library could do. In its simplicity, the script still combines Parselmouth with two other 
Python libraries (NumPy6 and Pandas7) and makes the stimulus generation reproducible 
and reusable.

NOISE_PARTS = {
'silence': parselmouth.Sound("silence_5minutes.wav"),
'low': parselmouth.Sound("low_noise_5minutes.wav"),
'high': parselmouth.Sound("high_noise_5minutes.wav")

}
START_SOUND = parselmouth.Sound("start.wav")
START_SILENCE_DURATION = 2 * 60
N_REPETITIONS = 3
TARGET_SAMPLING_FREQUENCY = 16000

def contains_consecutive_elements(a):
return np.any(a[:-1] == a[1:])

def next_playback_order(rng):
noise_part_names = list(NOISE_PARTS.keys())
noise_part_idx = np.repeat(np.arange(len(noise_part_names)), N_REPETITIONS)
while contains_consecutive_elements(noise_part_idx):

rng.shuffle(noise_part_idx)
return [noise_part_names[i] for i in noise_part_idx]

BIOACOUSTICS 5



This case study demonstrates two main points. First, it illustrates one feature where 
Parselmouth was not used but it could have been: namely, the authors could have 
generated playback stimuli with a script, and Parselmouth could have easily performed 
the audio data wrangling. In fact, this choice would have made repeating the experiment 
and generating stimuli much easier when testing a second species. Second, for the analysis 
part in the second species the existing code by Torres Borda et al. (2020) could be reused, 
saving time. Automated analysis is not a requirement to do bioacoustics research (for 
approaches relying more on manual analyses rather than scripting see e.g. Rose et al. 2018; 
Abur et al. 2018; Wirth and Warren 2020; Nunes et al. 2021); nonetheless, our case study 
suggests how the upfront investment of writing a Python or Praat script for automated 
analysis can pay off as the amount of collected data increases or more species get tested.

Evaluation of computational simulations: ‘Discovering articulatory speech targets 
from synthesized random babble’

Most mammalian vocalisations can be modelled by the source-filter theory of sound 
production. Originally developed to model human speech, the framework explains how 
the pitch and type of vowel in human speech can vary independently, to a first approx-
imation. The source-filter theory has also been applied to study non-human 

def create_next_playback(order):
sf = START_SOUND.sampling_frequency
extra_start_silence_duration = START_SILENCE_DURATION -

START_SOUND.duration
n_extra_start_silence_samples = int(sf * extra_start_silence_duration)
extra_start_silence_samples = np.zeros(n_extra_start_silence_samples,

dtype=float)
extra_start_silence = parselmouth.Sound(extra_start_silence_samples, sf)
sounds = [NOISE_PARTS[name] for name in order]
concatenated = parselmouth.Sound.concatenate(

[START_RECORDING_SOUND, extra_start_silence] + sounds)
resampled = concatenated.resample(TARGET_SAMPLING_FREQUENCY)
return resampled

rng = np.random.default_rng(42)
playback_orders = pd.DataFrame()
for i in range(N_PLAYBACKS):

playback_order = next_playback_order(rng)
playback_sound = create_next_playback(playback_order)
playback_sound.save(f"playback_{i}.wav", 'WAV')

playback_order_df = pd.DataFrame({
'playback_name': f"playback_{i}",
'noise_part_i': list(range(len(playback_order))),
'noise_part': playback_order

})
playback_orders = playback_orders.append(playback_order_df,

ignore_index=True)

playback_orders.to_csv("playback_orders.csv", index=False)

Code fragment 2: The use of Python and Parselmouth renders stimulus generation reusable 
and reproducible. Python functions help to compartmentalise the code, and Python’s built-in 
data structures (i.e. lists and dictionaries) allow the programmer to reuse existing program-
ming experience and paradigms in combination with Parselmouth’s functionality (see 
Supplemental online material, generate_playbacks.py, https://figshare.com/articles/ 
dataset/Parselmouth_for_bioacoustics_automated_acoustic_analysis_in_Python/24307391?file= 
42678626).
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vocalisations, where formants and formant range are important bioacoustic measures 
(Riede et al. 2005; Taylor and Reby 2010; Taylor et al. 2016; Fitch et al. 2016; Boë et al.  
2017). Here, we discuss a study on formants in human voice.

Rasilo and Jadoul (2020) used Parselmouth to apply Praat’s formant-tracking algorithm 
(Burg algorithm; Childers 1978) to assess the range of formants in synthesised speech. More 
specifically, the study first proposed a learning algorithm to explore the articulatory space of a 
randomly babbling 2D vocal tract model (the LeVI acoustic model; Rasilo et al. 2013), aiming 
to cover as much as possible of the associated acoustic space of the synthesised random 
utterances. This algorithm does indeed result in a more acoustically varied synthesised speech, 
as the observed range of the first two formants (F1 & F2) was significantly larger than that of 
a non-learning, randomly babbling instance of the same vocal tract model.

Accessed Praat functionality
Parselmouth was used to estimate F1 and F2 frequencies of all the vowels of the synthesised 
speech, immediately calculate the 2D convex hull encompassing all (F1, F2) points in each 
sample of speech, and calculate the area of each convex hull. The following fragment shows 
how little code is necessary to link together these different parts of the analysis:

LEARNED = 'LEARNED'
RANDOM = 'RANDOM'
N = 5

memory = joblib.Memory('cache/')

def get_audio_fn(i, what):
if what == LEARNED:

return f'data/final_speech_{i+1}.wav'
elif what == RANDOM:

return f'data/final_speech_random{i+1}.wav'
raise ValueError(what)

def get_times():
return [0.45 + i * 6.41 + j * 0.6 for i in range(200) for j in range(10)]

@memory.cache
def get_formants(i, what):

fn = get_audio_fn(i, what)
formant = parselmouth.Sound(fn).to_formant_burg()
times = get_times()
return [tuple(formant.get_value_at_time(f, t) for f in (1, 2)) for t in

times]

for what in [LEARNED, RANDOM]:
for i in range(N):

formants = get_formants(i, what)
F1, F2 = list(map(list, zip(*formants)))
hull = scipy.spatial.ConvexHull(formants)
print(what, i, hull.area)

Code fragment 3: Parselmouth’s formant analysis and SciPy’s convex hull calculations are combined in 
a handful of lines of Python code to calculate the 2-dimensional formant range of synthesised speech 
fragments (see Supplemental online material, plot_for mant_triangles.py, https://fig 
share.com/articles/dataset/Parselmouth_for_bioacoustics_automated_acoustic_analysis_in_Python/ 
24307391?file=42678623).
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● Development efficiency: Glueing together the formant analysis, convex hull calcu-
lation, and plotting (not shown in the above fragment) made development easier by 
not having to switch context between different scripts. Moreover, the Python Joblib8 

library provides an easy, plug-in solution which can cache the result of running 
a function on a set of parameters (known as ‘memoization’). Through use of this 
functionality in the Joblib Python library, the same slow calculation (i.e. the formant 
extraction) did not get repeated over and over again when updating other parts of 
the code during development. During the typical alternation of editing and running 
code, this improved efficiency while programming.

● Python integration: Calculating the convex hull of a set of points is a non-trivial 
operation to implement, but common enough for a scientific Python library such as 
SciPy9 to provide. Parselmouth makes it possible to directly feed Praat’s results into 
the convex hull library. In a different part of the project, SciPy’s scipy.io.loadmat 
provided easy access to the MATLAB files generated by the LeVI vocal tract model.

● Computational efficiency: As it is using the C++ code underlying Praat, the 
formant analysis is equally efficient when using Parselmouth as when using Praat 
directly. However, the Joblib library’s memoization cache makes successive calls 
during development (see above) much more efficient, eliminating repetitive calcu-
lation in the computationally most expensive part (i.e. the formant analysis). Being 
able to do the formant analysis, convex hull calculation, and stats and plotting in the 
same Python script facilitates data access and management by not having to save 
and read a file with formant values.

To conclude, by dealing with formant extraction in human voice, this example showcases 
Parselmouth’s potential in working with acoustic parameters key in mammalian vocali-
sations (formants) while using the ‘model species’ for which formants are best studied 
and understood (humans). Notice that here we deal with formants in speech, but 
formants are also extremely important in human non-speech bioacoustics, such as 
song, laughter, etc (Pisanski et al. 2016a; Pisanski et al. 2016b; Keller et al. 2017; 
Anikin et al. 2022). This example also shows Praat’s and Parselmouth’s potential in 
extracting acoustic features from synthesised, rather than recorded, sounds.

Finally, this case study again illustrates the importance of automatic and replicable 
pipelines. In this specific case of two interacting steps, simulating data and analysing 
data, a more traditional ‘point and click’ analysis pipeline would have resulted in immense 
loss of time, as it would have had to be performed again for every change in parameters in 
the data simulation step. On the contrary, a single automated pipeline makes it easy to 
update results and plots when a part of the analysis changes. Testifying to the advantages of 
reusable scripts, we reran the the 3-years-old script on, changed the colours and orientation 
of the plots, and generated a new figure (see Figure 2), all within a handful of minutes.

A scatterplot of the values of the first two formants tracked by Praat, accompanied by 
the convex hull encompassing all the points. A single Python script performed the 
formant analysis through Parselmouth, calculated the convex hull with SciPy, and plotted 
the result with the matplotlib library. To demonstrate the advantages of having scripted 
the analysis, we swiftly recreated the plots with new data and tweaked the figure’s 
aesthetics (cfr. Rasilo and Jadoul 2020).
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Adaptive playbacks in interactive experiments: ‘Gibbs sampling with people’

As humans divide the world into categories and concepts, it can be surprisingly hard to say 
which features make perception fall into a certain category. A bioacoustics parallel would be 
to test which of the many acoustic features encodes aspects of meaning: a signaller’s 
identity, physical state, potential referential meaning, etc (Seyfarth and Cheney 2003; 
Townsend et al. 2013). One approach to linking sound and meaning consists in applying 
correlations and inferential statistics on a large dataset. In an experimental setting however, 
targeted trials can be used to more precisely probe which features and values are important 
for a participant to distinguish perceptual categories. As one such approach, Harrison et al. 
(2020) propose ‘Gibbs Sampling with People’ (GSP). Analogously to ordinary Gibbs 
sampling, GSP samples from a multidimensional probability distribution by repeatedly 
sampling the full conditional probability distribution of each single dimension. In GSP, 
instead of a mathematical formulation of this condition distribution, the participant’s 
perceptual judgement is used to repeatedly sample a new one-dimensional value. When 
this procedure is applied correctly, the mathematical derivation underlying Gibbs sampling 
ensures convergence to the multi-dimensional probability distribution associated with the 
perceptual category.

The second, online experiment by Harrison et al. (2020) applies GSP to the emotional 
prosody in human speech, and is a good case study where Parselmouth fits into a larger, 
interactive experimental setup. Following GSP, participants in the experiment repeatedly 
altered one of seven selected prosodic measures of the speech fragments to make them 
sound more ‘happy’, ‘angry’, or ‘sad’. After several iterations of this procedure, each of the 
three emotional categories became associated with a distinct set of typical values for each 
of the seven prosodic dimensions.

On a technical level, this study shows flawless integration of Parselmouth into large- 
scale software platforms. All experiments were run online, through a combination of 
Amazon Mechanical Turk10 and a Heroku11 back-end. The actual experiments were 
implemented in Python, building on top of the PsyNet12 and Dallinger13 frameworks. 
The full technical setup of these experiments is described in detail in the article’s 
accompanying supplementary material, which includes the experiment’s full Python 
code: https://osf.io/rzk4s/. As apparent from the supplementary material and Python 
code, Parselmouth fits right into this technical setup, providing a small but crucial piece 
of functionality within the larger Python framework for online experiments.

Accessed Praat functionality
The study used Parselmouth to, on-the-fly, change several prosodic features of pre-
viously recorded sentences and synthesise a new version of the sentence. More speci-
fically, the participants could adapt the sentences’ pitch level, pitch range, pitch slope, 
jitter, duration, and intensity (modulation frequency and depth) of the audio fragments 
(i.e. several acoustic parameters that also often get used in animal bioacoustics). 
Concretely, in Praat and Parselmouth, this corresponds to the different aspects of 
a ‘Manipulation’ object.14

● Development efficiency: It would be possible to implement the manipulation as 
a Praat script and call Praat as a subprocess from Python. This case study, however, 
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Table 1. A wide variety of research fields and studies have made use of Parselmouth. A majority of 
these studies use Parselmouth to perform acoustic feature extraction (AFE).

Macroarea & Title of the paper
Keywords (as reported in the original 

paper) Parselmouth functionality

Bioacoustics
Large-scale unsupervised clustering 

of Orca vocalizations: a model for 
describing Orca communication 
systems (Poupard et al. 2019)

none Acoustic feature extraction (AFE): 
pitch curve extraction

Scaredy-cat: Assessment of individual 
differences in response to an acute 
everyday stressor across 
development in the domestic cat 
(Urrutia et al. 2022)

● stress
● social separation
● individual differences
● vocalisation
● thermography
● Felis silvestris catus

AFE: mean and standard deviation of 
fundamental frequency

Ontogeny of vocal rhythms in harbor 
seal pups: an exploratory study 
(Ravignani et al. 2019)

● bioacoustics
● pinnipeds
● rhythm
● timing
● vocal development

AFE: maximum-intensity peaks, inter- 
peak intervals

Machine learning
Neural analysis and synthesis: 

Reconstructing speech from self- 
supervised representations 
(Choi et al. 2021)

● speech analysis
● speech synthesis
● voice conversion
● self-supervised
● information perturbation

Speech manipulation and resynthesis 
(formant shifting, pitch 
randomisation, PSOLA)

What do audio transformers hear? 
Probing their representations for 
language delivery & structure 
(Singla et al. 2022)

● interpretability
● probing
● pre-trained acoustic  

representations

AFE: mean pitch, local jitter, local 
shimmer, voiced to unvoiced ratio

Speech pathology & medicine
Deep learning-based classification of 

posttraumatic stress disorder and 
depression following trauma 
utilizing visual and auditory 
markers of arousal and mood 
(Schultebraucks et al. 2022)

● computer vision
● deep learning
● depression
● digital biomarker
● emergency department
● landmark feature
● posttraumatic stress
● resilience
● voice analysis

AFE: audio expressivity index, audio 
intensity, fundamental frequency, 
harmonics-to-noise ratio, glottal to 
noise excitation ratio, voice frame 
core, formant frequency variability, 
intensity variability, pitch 
variability, normalised amplitude 
quotient

Artificial intelligence-based voice 
assessment of patients with 
Parkinson’s disease off and on 
treatment: machine vs. deep- 
learning comparison 
(Costantini et al. 2023)

● speech
● Voice
● Parkinson’s disease
● artificial intelligence
● deep learning
● CNN
● SVM
● L-Dopa
● F0

AFE: 96 vocal formants-related 
features

Vocal markers from sustained 
phonation in Huntington’s disease 
(Riad et al. 2020)

● Huntington’s disease
● phonation
● pathological speech processing
● dysarthria
● modulation power spectrum

AFE: airflow insufficiency, 
aperiodicity, irregular vibration of 
vocal folds, signal perturbation, 
increased noise, vocal tremor, 
articulatory deficiency (in 
combination with pre-existing 
‘tremor’ Praat script; Brückl 2012)

Do you have COVID-19? An artificial 
intelligence-based screening tool for 
COVID-19 using acoustic parameters 
(Vahedian-Azimi et al. 2021)

none AFE: fundamental frequency, 
fundamental frequency 
perturbation, harmonicity, vocal 
tract function, airflow sufficiency, 
and periodicity

(Continued)
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Table 1. (Continued).

Macroarea & Title of the paper
Keywords (as reported in the original 

paper) Parselmouth functionality

Formant-aware spectral analysis of 
Sustained vowels of pathological 
breathy voice (Ikuma et al. 2023)

● voice disorder
● breathiness
● acoustic measurements
● linear regression
● harmonic modeling
● vowel effect

AFE: fundamental frequency, acoustic 
breathiness index

Emotional analysis & prosody
Gender, candidate emotional 

expression, and voter reactions 
during televised debates 
(Boussalis et al. 2021)

none AFE: average per-second 
fundamental frequency

Modelling individual and cross- 
cultural variation in the mapping of 
emotions to speech prosody 
(van Rijn and Larrouy-Maestri  
2023)

none Pre-processing: sentence 
segmentation

Does the Lombard effect improve 
emotional communication in 
noise? – Analysis of emotional 
speech acted in noise 
(Zhao et al. 2019)

● Lombard effect
● noise
● emotional speech
● database recording
● auditory detection
● acoustic analysis

AFE: fundamental frequency, sound 
intensity, harmonics-to-noise ratio, 
first and second formants, spectral 
tilt

Human-robot interaction & social robotics
Tell me more! Assessing interactions 

with social robots from speech 
(Laban et al. 2020)

● social robots
● human-robot interaction
● self-disclosure
● voice assistant
● voice analysis
● embodiment

AFE: mean pitch, mean harmonicity, 
mean intensity, energy, duration

Towards a real-time measure of the 
perception of anthropomorphism 
in human-robot interaction 
(Tsfasman et al. 2021)

● multi-modal
● human-robot interaction
● prosody
● acoustic-prosodic entrainment

AFE: pitch and RMS-intensity

Informal caregivers disclose 
increasingly more to a social robot 
over time 
(Laban et al. 2022)

● caregiving
● informal caregivers
● human-robot interaction
● HRI
● social robot
● self-disclosure
● intervention
● ecological  

momentary intervention
● EMI
● stress

Speech segmentation: extracting 
disclosure duration

Music & song
Large-scale iterated singing 

experiments reveal oral 
transmission mechanisms 
underlying music evolution 
(Anglada-Tort et al. 2023)

● cultural transmission
● oral transmission
● cultural evolution
● iterated learning
● social learning
● singing
● music evolution
● melody
● pitch perception
● online experiments

AFE: pitch (from song)

Acoustic analysis of the influence of 
warm-up on singing voice quality 
(Półrolniczak and Kramarczyk 2023)

● signal analysis
● singing voice
● singing quality
● acoustic analysis
● warm-up

AFE: jitter and shimmer
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showcases two potential advantages of Parselmouth over this approach. First and 
foremost, it provides a ready-to-use Python library and gets rid of a lot of technical 
boilerplate code and error-handling the subprocess approach would entail. 
Secondly, it also eliminates the context-switching when scripting in multiple lan-
guages and their associated development environments.

● Python integration: The implementation takes advantage of the integration with 
Python on two different levels. On an architectural level, Parselmouth provides 
a straightforward way to change relevant prosodic features in resynthesised speech 
within the Python frameworks for online experiments (i.e. PsyNet and Dallinger). 
At the implementation level, the published code also shows a tight integration with 
the NumPy15 and SciPy16 scientific computing Python libraries, when modifying 
and interpolating the audio’s pitch curve.

● Computational efficiency: A naive alternative to the current workflow could have 
been to generate and save in advance all possible combinations of sounds to be 
played to participants. In the given framework of Gibbs sampling where partici-
pants continuously adjust each parameter, it would however be nearly impossible 
to generate all possible combinations of parameters before the experiment. Even 
when only very coarsely subdividing the range of each variable into, say, 10 
discrete values, this would still result in 107 (i.e. 10 million) possible parameter 
combinations and stimuli to generate. Given the combinatorial and continuous 
nature of the experimental stimuli, Parselmouth makes it easy to achieve a crucial 
gain in computational efficiency by generating the stimuli during the experiment.

The case study is a perfect example of how Parselmouth can be combined with many 
different existing Python software packages and facilitate new research. As we outlined 

Figure 2. A scatterplot of the values of the first two formants tracked by Praat, accompanied by the 
convex hull encompassing all the points. A single Python script performed the formant analysis 
through Parselmouth, calculated the convex hull with SciPy, and plotted the result with the matplotlib 
library. To demonstrate the advantages of having scripted the analysis, we swiftly recreated the plots 
with new data and tweaked the figure’s aesthetics (cfr. Rasilo and Jadoul 2020).
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above, it would have been possible to implement the experiment purely with Praat, but 
using Parselmouth takes care of all technical details and enables researchers to focus on 
the actual experiment at hand.

This paper is also a good example of a different experimental pipeline involving 
Parselmouth. This study did not use Parselmouth to acoustically analyse collected data, but 
rather to generate stimuli on-the-fly during an interactive experiment. The application of 
Parselmouth in a large-scale Python experimental framework is a real-life example of the use 
case anticipated by Jadoul et al. (2018, ‘Integration into experimental design’ subsection), 
which demonstrated combined usage of Parselmouth in an interactive PsychoPy experiment 
(Peirce et al. 2019). Past research has used interactive experimental testing in non-human 
animals (e.g. baboons; Fagot and Paleressompoulle 2009; Fagot and Bonté 2010; Grainger 
et al. 2012; Claidiere et al. 2014) and shown its feasibility for visual experiments. We suggest 
that Parselmouth, in combination with PsychoPy and other libraries, could provide flexible 
solutions to interactive experiments across species involving sound.

Other studies using Parselmouth

Table 1 shows a selection of other published articles which have used the original 
Parselmouth paper (Jadoul et al. 2018). These studies showcase the broad range of scientific 
fields using Parselmouth, and the variety of Praat functionality accessed through it.

Table 1 shows the typical contexts in which Parselmouth has proven useful. Firstly, 
Praat’s fundamental frequency analysis is possibly the single most popular feature. This is 
perhaps unsurprising, as this algorithm was developed by one of Praat’s authors 
(Boersma, 1993). Parselmouth provides direct access to the main implementation of 
said algorithm in Praat, and makes it available from Python.

Another trend in Table 1 is the prevalence of studies where the interpretability of 
measurements and results is important. The phonetic measurements of Praat typically 
have a close correspondence to the production process (i.e. related to articulation and 
voice characteristics); for example, fundamental frequency directly corresponds to the 
vocal folds’ frequency of vibration, and formants correspond to the upper vocal tract’s 
resonance frequencies. From this perspective, it is understandable that Parselmouth gets 
used to calculate phonetic measures in medical and speech pathology studies, in research 
into explainable AI and in machine learning, or in more exploratory studies.

Discussion

For more than 30 years Praat has been, and will likely continue to be, a unique tool to 
study human speech. Its applications have however reached beyond phonetics, and 
several of its analyses are routinely used in bioacoustics. Praat is free and open source, 
and has been kept up to date to be used on modern computational infrastructure. As 
argued when Parselmouth was first released, a tighter integration of Praat into the Python 
scientific ecosystem can benefit both Python and Praat users (Jadoul et al., 2018). 
Experienced Praat users can more easily combine their expertise and existing Praat 
scripts with all scientific Python libraries. Meanwhile, Python users from various dis-
ciplines can access Praat functionality and automate their acoustic analyses without the 
need to learn a new scripting language.
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Here, we have evaluated the range of scientific applications of Parselmouth, describing 
three distinct case studies in detail. We suggest there is still some untapped potential of 
Praat and Parselmouth, especially in the field of bioacoustics. The selection of scientific 
studies using Parselmouth in Table 1 and the preceding case studies show a particular focus 
on acoustic feature extraction. Praat’s fundamental frequency estimation algorithm is the 
most popular feature accessed through Parselmouth, but also its analyses of formants and 
other voice parameters (i.e. glottal pulses, voice breaks, jitter, shimmer, harmonic-to-noise 
ratio) are often used. So far, a large majority of articles using Parselmouth involve the 
vocalisations of one animal species, human speech. However, already existing bioacoustics 
studies using Praat and Parselmouth clearly demonstrate the applicability of these methods 
to a much broader range of species and needs. In this paper we have focused on mammals; 
how Parselmouth can be fruitfully used in avian, reptilian, amphibian, piscine, or arthro-
podean bioacoustics remains an open question, which we hope to see answered by those 
who study non-mammalian species venturing into Parselmouth as new users.

Given our overview of studies using Parselmouth and bioacoustics studies with Praat, 
several specific suggestions come to mind where and how Parselmouth could be used in 
future research. Formant extraction and quantification is often used in bioacoustic work 
across species. Given the non-trivial, powerful formant extraction algorithm in Praat, we 
suggest that researchers previously unfamiliar with Praat or Praat scripting could use 
Parselmouth to access the algorithm in animal studies. The on-the-fly resynthesis and 
generation of new stimuli, such as demonstrated by Harrison et al. (2020), could also be 
extended to animal research. The study is a prime example of how Parselmouth can play 
a role in a larger interactive experimental setup, e.g. live monitoring animal vocalisations or 
adaptively generating stimuli during a perceptual experiment. The application of 
Parselmouth to synthesised speech (Rasilo and Jadoul 2020) raises the opportunity to 
perform computational modelling and synthesis techniques on non-human animals’ voca-
lisations, and illustrates the role that Parselmouth can play in analysing such data. Here and 
in other scientific studies, adopting Praat and Parselmouth provides a tool for direct cross- 
species comparisons by processing data with the exact same pipeline.

The collection of bioacoustics-related Python packages keeps expanding, resulting in 
a whole ecosystem of packages and tools that can interact and work together (Rhinehart 
et al. 2022). A few recent examples show the variety of available software. The crowsetta 
library (Nicholson 2023) provides a single Python interface to read and process different 
bioacoustics annotation formats. OpenSoundscape (Lapp et al. 2023), Koogu (Shyam  
2022), and vak (Nicholson and Cohen 2022) are Python libraries for training custom 
machine learning models on animal vocalisation. The scikit-maad (Ulloa et al. 2021) 
package consists of functionality necessary to process ecoacoustics data. On top of these 
bioacoustics-specific packages, Python features a vast array of general scientific comput-
ing libraries. It is impossible to list all potentially useful Python packages, but the case 
studies above have shown some of the most pervasive ones: NumPy, SciPy, and Pandas. 
Libraries also exist to link Python and R (notably, rpy217 and reticulate18), another 
programming language with plenty of libraries dedicated to bioacoustics, such as 
warbleR (Araya‐Salas et al. 2017) or Seewave (Sueur et al. 2008). In this landscape, 
Parselmouth aims to fill one missing piece of the puzzle, making Praat more easily 
accessible from Python and combinable with all these other libraries.
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The usual caution when working with bioacoustics data is still necessary when 
using Parselmouth. The Python interface aims to simplify the integration of acoustic 
analyses into a larger workflow, but Parselmouth cannot magically determine which 
parameter values or Fourier window length are appropriate for a particular species or 
case at hand. On the contrary, it is important to realise that Praat was designed to 
deal with human speech, and that its default parameters have been fine-tuned for this 
one species. Given the similarity of production mechanisms, Praat algorithms and 
parameter settings will be most applicable in other mammalian species (potentially 
even non-laryngeal ones; e.g. Madsen et al. 2023; Ravignani and Herbst 2023). This 
means that, as when applying any methodology, when using Praat and Parselmouth 
researchers should always keep an eye on the methods’ suitability and find appro-
priate parameter settings with regard to the species of interest.

When exploring methods and parameter values, Parselmouth and Praat perfectly 
complement each other: example recordings and different parameter settings can be 
explored in Praat’s graphical user interface (GUI), the noise conditions can be inspected, 
and the spectrogram and results should be scrutinised before automating the resulting 
workflow (either as a traditional Praat script or in Python with Parselmouth). The direct 
correspondence between Parselmouth and Praat versions ensures reproducibility of 
results between software packages.19 We believe this to be an accessible way of applying 
the classical good practices in bioacoustics research. Additionally, Parselmouth can also 
be part of a more automated parameter exploration: given a sample of manually or semi- 
automatically analysed training data, a script can loop over multiple parameter combina-
tions in order to find the optimal parameter values.

To conclude, we hope the examples presented in this article have shown the benefits 
that Parselmouth can bring to a data-focussed bioacoustics project. Several studies over 
the past years have already integrated Parselmouth as a component of their experiment 
or analysis. And while no two projects or researchers have the exact same needs, the 
variety of studies shows Parselmouth’s potential to facilitate existing bioacoustics 
research pipelines and enable new, more complex experimental setups. Finally, by adding 
to the collection of available Python bioacoustic software packages, Parselmouth can 
hopefully play a role in the shared effort to make bioacoustics analyses more efficient, 
reusable, and reproducible.

Notes

1. Available from https://github.com/YannickJadoul/Parselmouth, documentation at https:// 
parselmouth.readthedocs.io/

2. https://www.python.org/doc/essays/omg-darpa-mcc-position/
3. https://numpy.org/doc/stable/user/c-info.python-as-glue.html
4. The corresponding Praat version can be accessed as parselmouth.PRAAT_VERSION.
5. https://www.fon.hum.uva.nl/praat/manual/Sound__To_Pitch__ac____.html
6. https://numpy.org/
7. https://pandas.pydata.org/
8. https://joblib.readthedocs.io/
9. https://scipy.org/

10. https://www.mturk.com/
11. https://www.heroku.com/
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12. https://psynetdev.gitlab.io/PsyNet/
13. https://dallinger.readthedocs.io/
14. https://www.fon.hum.uva.nl/praat/manual/Manipulation.html
15. https://numpy.org/
16. https://scipy.org/
17. https://rpy2.github.io/
18. https://rstudio.github.io/reticulate/
19. In scientific publications, we advise to report the exact version of both Praat and 

Parselmouth used to obtain the results.
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